
Journal of Young Scientist, Volume IV, 2016 
ISSN 2344 - 1283; ISSN CD-ROM 2344 - 1291; ISSN Online 2344 - 1305; ISSN-L 2344 – 1283 

177 

 
ARDUINO BASED CALIBRATION OF AN INERTIAL SENSOR IN VIEW 

OF A GNSS/IMU INTEGRATION 
 

Andra Mihaela OANCEA1, Teodor-Alexandru SARARU1 

 
Scientific Coordinator: PhD. Vlad Gabriel OLTEANU2  

 
1University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăşti Blvd, 

District 1, 011464, Bucharest, Romania, Phone: +4072.725.96.60, 
      Email: andra.oancea@outlook.com; alex.sararu@outlook.com  

2Romanian Space Agency, 21-25 Mendeleev Str., District 1, 010032, Bucharest, Romania,  
Email: vlad.olteanu@rosa.ro  

 
Corresponding author email: andra.oancea@outlook.com 

 
Abstract 
 
The aim of this paper is to present the testing and calibration of an Inertial Measurement Unit (IMU) by using an 
Arduino Uno microcontroller. To accomplish this, the Arduino microcontroller will be programmed through Matlab, 
considering the number of built-in math and engineering functions and the advantages of the numerous plotting 
methods. Furthermore, filtering algorithms will deal with the calibration of the sensor and analysis of its behaviour in 
order to reduce the errors caused by the bias and drift rate of the sensor. The last part of the article will focus on future 
improvements for the application, in terms of model used, general architecture and tuning techniques as well as the 
coupling of a GNSS sensor.  
 
Key words: Arduino, IMU, Matlab, GNSS. 
 
 
INTRODUCTION  
 
Arduino was created at Ivrea Interaction 
Design Institute with the purpose of being a 
tool for prototyping, but when it reached the 
mass marked it evolved into a complex tool 
with various parts adapted for certain needs and 
a wide library complementary to most of the 
projects. 
Arduino is “an open source prototyping 
platform” according to the providers, which has 
both hardware and software parts.  
 
There are various Arduino boards as it is the 
main component of a project, depending on 
facts such as power consumption, number of 
pins for input/output, working voltages as well 
as physical size, storage capacity, processing 
resources, processor frequency rate, evolution 
of the hardware part, price and more 
considerations. The board we used is the most 
basic one, namely an Arduino UNO v3. 

The first step in any Arduino project is to make 
the initialisation of the board and write a set of 
commands in Arduino programming language 
using the Arduino Software (IDE) that will be 
sent to the microcontroller of the board, so it 
will know what to do. However, the uploading 
should not be performed until an errorless 
compilation is achieved.  
The combination of the hardware and software 
can perform actions such as reading inputs (e.g. 
from gas, alcohol, dust, fingerprint, light, 
vibration, InfraRed (IR), magnetic, sonar, 
sound, weather sensors) and writing outputs 
(e.g. with LCD screens, Light Emitting Diodes 
(LEDs), speakers, motors or just Tweet a 
message and much more). 
As examples of Arduino projects, it could be an 
electronic piano, a rocket stabilizer, a drone, 
electronic nose, sonic eye, mp3 player, a phone, 
RC car, thermostat, intruder alarm, 2D plotter, 
even a 3D printer and much more. 
Besides the Arduino Software (IDE) and 
Arduino hardware components, we also used 
MAtrix LABoratory software (MATLAB), 
which is a strong enginnering tool, which uses 
a programming language developed by 



 

178 

Mathworks and it is well suited for such 
applications. 
MATLAB is dealing with tools for 
mathematical calculations, statistics, 
optimization, communications, control systems, 
parallel computing, and application deployment 
and much more. 
 
Because of the Arduino evolution and 
spreading, Mathworks is now supporting it, 
through integrating tools for connection 
between the two. 
 
MATERIALS AND METHODS 
 
As stated above, in order to build this project, 
we used an Arduino Uno v3 board as “the 
brain” of the project, an external IMU sensor – 
MPU6050 – from Sparkfun, a breadboard and 
connection wires. 
The board used is the basic one as we 
considered it being enough for our project, 
when speaking about resources. It has an 
ATmega328P microcontroller, with 5V 
operating voltage, 16 MHz quartz crystal, 14 
digital pins (6 of them can be Pulse Wide 
Modulation pins PWM), 6 analogue pins, USB 
connection and a power jack. 
An Inertial Measuring Unit is an electronic 
device capable of measuring angular rate and 
specific force of a body using accelerometers 
and gyroscopes. As destination usage, some 
examples might be the manoeuvre of aircrafts 
(also Unmanned Aerial Vehicles UAVs), 
spacecraft, satellites, landers and much more. 
The gyroscope is an angular velocity sensor. It 
is measuring the rate of change of an axis at the 
real moment, in time. 
The IMU we used for this project is an 
MPU6050 from Sparkfun, which integrates a 
triple axis accelerometer and a triple axis 
gyroscope (angular rate sensor). It works with 
2.3-3.4 input voltage and it has a Digital 
Motion Processing (DMP) capable of complex 
readings as well as gesture detecting and time 
synchronisation, a digital temperature sensor 
and an I2C connection used to reduce the noise. 
For this project we used only raw data reading 
from the gyroscope. 

 
  
 
 
As for the methodology used, we divided this 
into three steps. 
The first step refers to the general architecture 
used in connecting the board with the sensor 
and breadboard, using connection wires, 
according to the provider’s schemes and 
breadboard capabilities. Also, we mounted the 
board, breadboard and sensor on a platform so 
the assembly resulted will be fixed, this being 
relevant for the sensor readings and plot. 
The second part consisted in working under 
Arduino software to initialize the board and 
sensor, access the libraries linked to it and also 
consisted in writing command lines in order to 
have an export of the data collected through the 
sensors within the Arduino software, using 
Serial Monitor tool. 
Once the script has been finished, a 
compilation is required to be performed, so 
there will be no errors, with respect to the 
programming language used. 
If the compilation test passes, the script 
uploaded to the board will be performed as 
long as it is connected to a power source, 
regarding that the Arduino (IDE) software 
divides the script into two parts, one being 
performed when the board is plugged in or at 
any reset of it, while the second one is 
performed in loop after the first part is 
complete. 
The third step regards the Matlab algorithm 
implementation, where we have processed the 
data collected from the sensors into a two 
iteration approach adjustment model, in order 

Figure 1. Materials used in the project



 

179 

to determine the offset and the drift of the 
sensor. The adjustment approach was 
represented by a least squares linear regression.  
The output of this step can be observed in 
Figure 7 where one can observe the difference 
between raw data and the corrected one.  
The Matlab scripts were then fed into a very 
simple Graphical User Interface (GUI) which 
runs with the software itself and has only four 
buttons. The buttons can be pressed by the user 
to perform: connection to Matlab and 
calibration of the device (including here the 
measurement number desired) and create plots.  
 
RESULTS AND DISCUSSIONS 
 
The results of the first part, namely the 
connection between the components and the 
mounting on support can be seen in the figure 
below (Figure 2). 
 

 
 
 
 
As said, we first coded in Arduino (IDE) 
software and the output was achieved using a 
tool called “Serial Monitor” available in the 
software. 
The Serial Monitor is used to print data 
collected by the sensor, after we have selected 
the so called baud rate (down corner on the 
right side from Figure 3), which represents the 
communication rate between the computer and 
the board. 

Before uploading the code, the software is 
making a compilation that verifies if the code 
was errorless, with salute to the programming 
language used. 
In this case, we have selected to print only the 
gyroscope data, on columns, with a rate of 10 
measurements per second in the following 
order: the first column is represented by 
degrees measured along X axis, second column 
with degrees measured along Y axis and the 
third column, with degrees measured along Z 
axis. 

 
 
However, those are not the real values, because 
every measurement must be divided by the 
sensitivity of the sensor, which, with a reading 
rate set at 250 degrees every second is 131 
LSB/dps (Least Significant Bit/degree per 
second). 
After the code is uploaded to the board, the 
initialization and other commands are stored in 
the board’s memory and it will perform the 
required tasks until it is unplugged from the 
power source or we want to upload a new code 
(or change the existing one). 
After the initialization is done, the next step 
was to connect the Arduino board to the 
Matlab. 
For this, we coded in Matlab software. The 
following picture is presenting the part of the 
main code responsible with the connection 
between Arduino and MATLAB. 

Figure 2. Connection between the components 

Figure 3. Output from the Serial Monitor tool 



 

180 

 
 
 
Because the data obtained from the sensor was 
affected by errors namely, drift and offset, we 
had to do a calibration. This calibration is based 
on an adjustment model with two iterations.  
The aim of the calibration is to reduce the 
offset (fixed) and the eventual drift (time 
dependent) and by combining those two errors 
we obtain a form similar to linear equations. 
As said, we have two iterations. The model 
used for the first iteration may be seen in the 
picture below: 
 

 
 
 
 
The V1 is the vector of residuals, A is 
observations matrix and L1 is a free term 
vector. Also, t1...n is the time of the 
corresponding measurement m1…n, and the 
parameters a0 and b0 correspond to the bias and 
namely the drift of the sensor on a specific axis. 
As there were no initial values for the 
parameters, we had to ensure that the 
estimation is convergent, and therefore we did 
a second iteration taking as initial values for the 
parameters the ones determined in the first step. 
The second iteration is described in the below 
picture (Figure 6): 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
The final parameters were then obtained as the 
sum of the two: 

    X = X1 + X2  
 

With the offset and drift determined, we have 
applied the correction to raw data in real time. 
As a result, one can see the improvements 
(Figure 7) which it is showing how the 
measurements were corrected comparing with 
the raw gyroscope data.  
One can note that the drift is very small 
compared to the measurement error and thus it 
could be considered as null.  

 
 
 
 

Figure 5. Adjustment method  

Figure 6. Adjustment method (second iteration) 

Figure 4. Connection between Arduino board and Matlab 

Figure 7. Raw measurements compared with 
corrected measurements 



 

181 

 
 
 
 
 
 
 
 
 
The third plot is represented by an arrow that is 
associated with the orientation of the IMU 
sensor (Figure 9). When the sensor is fixed the 
arrow is fixed too and when is moving the 
arrow is moving too. The arrow is moving with 
the same rate, which the sensor is moving. 
 

 
 
 
In order to make a good visual representation, 
we wrapped all in a GUI which stands for 
Graphical User Interface. Using the buttons in 
the GUI, the connection between the Matlab 
and the board and the calibration can be 
realized together with the plots. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
FUTURE WORKS 
 
Regarding future works, we will firstly want to 
obtain ever better results by optimizing the  
scripts and functions for the gyro calibration. 
Afterwards, we will develop a method for 
calibrating the accelerometer.  
The second step will be represented by the 
loosely integration of a GNSS receiver and the 
IMU sensor for navigation purposes. So far we 
have connected the GNSS sensor and also 
coded the Arduino IDE part obtaining the 
individual positions. Those steps will be 
followed by creating a Kalman filter in order to 
obtain the position of a moving GNSS receiver 
considering the error model proposed for the 
IMU. 
 

 
 
 
 

 
 
 

Figure 11. GPS sensor connected to the Arduino 
board. 

Figure 12. Code section from IDE software that 
represent the initialization. 

 Figure 9. Inertial Measuring Unit orientation

 Figure 8. Raw measurements and adjustment model

Figure 10. Graphical User Interface with buttons 



 

182 

CONCLUSIONS  
 
In conclusion, using Arduino hardware and 
software, together with the Matlab capabilities 
represents a good tool when we are speaking 
about small to medium scale projects, 
especially for student applications which do not 
require a great initial investment.  
 

REFERENCES 
 
John Baichtal, Arduino for beginners 
Arduino, www.arduino.cc 
Robofun, www.robofun.ro 
Steven J. Miller, The Method of Least Squares 
John Fox, Applied Regression Analysis and Generalized 

Linear Models 
Mathworks, http://www.mathworks.com/support/books 
 

 


