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Abstract 

 

This paper presents a method of determining the coordinates of new points based on the measured distances 

(trilateration) using the indirect measurement method. This method is treated theoretically and numerically using 

Gauss-Markov method, the matrix treating. Another contribution consists of the Young Test to verify the random errors.  
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INTRODUCTION 

 

Planimetric support networks are formed of 

points, which joined together with imaginary 

lines form a series of adjacent triangles. The 

trilateration participates in creating the geodetic 

network, all the points located on the surface of 

the Earth, for which the coordinates are known 

in a reference system. The state geodetic 

network, created separately by triangulation 

and levelling, is the main support network for 

all topo-geodetic and photogrammetric work. It 

is divided in orders: I, II, III and IV. The state 

triangulation network was completed with a 

thickening network of order V. (Moldoveanu, 

2000) 

There were defined several classification 

criteria for networks, but by the type of 

network measurements exists: 

- triangulation networks; 

- trilateration networks; 

- networks formed with global positioning 

stations; 

- mixed networks. 

Trilateration is the process of measuring 

distances (edges) in planimetric support 

networks in order to determine the coordinates 

of the points that form these networks. 

As electronic distance measuring equipment 

provides great accuracy and as linear 

measurement is much easier than the angular 

measurement, trilateration can be considered as 

one of the most economic methods to create, 

rehabilitate and thicken the  planimetric support 

networks.  

To execute a trilateration every point of the 

network has to be accessible because at each 

measured edge on one end will be installed the 

instrument and on the other the reflector. It is 

generally stationed in all the points and the 

edges are measured in both directions. (Popia, 

2005) 

 

MATERIALS AND METHODS 

 

On a set of distance measurements effectuated 

with the indirect method in a network formed 

of  2 points of known rectangular coordinates 

(X, Y) and 5 new points, the coordinates for the 

new points will be determined (Figure 1).  

The distances were measured in both directions 

in order to benefit of a rigorous compensation. 
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Figure 1. The trilateration network 

 

In order to compensate the network the Gauss-

Markov method is applied, which involves the 

matrix treating. 

 

RESULTS AND DISCUSSIONS 

 

Compensating a trilateration network involves 

going through based stages, beginning by 

writing the correction equations and calculating 

the weights. 

The weights can be calculated with the relation: 
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p  , where Ds' is the 

average error of the series of observations made 

on that edge and minD  is the length of the 

smallest edge measured in the network, which 

receives the value 1 as its weight. 

By adding adjustments to the provisional 

values (Table 1) there will be determined the 

most probable values of the parameters. 

(Moldoveanu, 2000) 

 
 

 

Table 1. Provisional coordinates of the new points 

points 

 

 
 

The corrections are called coordinates increases 

and are denoted dX, respectively Dy. 

Xi = Xo
i + dXi  Xj = Xo

j + dXj    

Yi = Yo
i + dYi  Yj = Yo

j + dYj 
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This will get: 
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Where 
0

ijθ  and 0

ijD  are calculated with the 

provisional coordinates of the points and *

ijD  is 

the measured distance. 

The correction equation for the measured 

distance between two new points “i” and “j” is 

calculated using the formula: 
D

ijiijij

D

ij lBijdYAijdXBijdYdXAv 

where 
D

ijl = 
0

ijD  - 
*

ijD . 

The form for the correction equation for the 

measured distance between an old point “i” and 

a new point “j”: 
D
ijjjij

D
ij

lBijdYdXAv   

The form for the correction equation for the 

measured distance between a new point “i” and 

an old point “j”: 
D

ijii

D

ij lBijdYAijdXv   

Between two old points distance measurements 

are not performed. 

To compensate the network it’s necesary to 

solve the normal system of equations. Based 

upon the calculated coefficients for the 

unknown elements of the linear system of 

corrections will be issued the coefficients 

matrix, the matrix A. Starting from the general 

form, the matrix form, of the corection 

equations: lAxV  . The formed system is an 

indeterminate compatible system, with the 

following notations: 

V – the measurement corrections vector; 

A – the coeffcients of the correction equations 

matrix;  

x – the coordinate increases vector (unknowns 

vector) 

l  –  the free terms vector .  

Applying the least square method VTpV –> min 

there will be determined formulas for the 

coordinate increases vector and for the 

corrections vector. Using the N matrix, the 

normal matrix, one can determine the 

unknowns vector. 

PAAN T  

0PlAPAxA TT   

PlANx T1  

lAxV   

The normal system is compatible determined, 

so the values of the unknowns can be uniquely 

determined. (Moldoveanu, 2000) The results of 

the matrix calculus is presented below: 
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The compensated values are determined by 

adding the systems solutions to the provisional 

values (Table 2). 

After determining the compensated 

coordinates, the compensation of the network 

can be finished (Table 3). 

 
Table 2. The compensated coordinates 

 

 
 

Any processing of observations in a geodetic 

network ends with the calculus of precision 

assessment indicators.  

The standard deviation of the unit weight: 

nm
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where m is the number of measurements and  n  

is the number of unknowns. 

The standard deviation of a compensated 

measurement: 

i

0

mij
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The standard deviation of the unknowns: 

iii xx0x qss   

iii yy0y qss   

The standard deviation to determine the 

position of the point: 

2
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The standard deviation on the network: 

n
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t
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Where n is the number of new points. 

(Voineagu, 2007) 

The values obtained for the standard deviations 

are: 

0s  0.001 m 

xB08s  0.001 m  yB08s  0.002 m 

xB06s  0.001 m  yB06s  0.001 m 

xB04s  0.001 m  yB04s  0.001 m 

xA20s  0.002 m  yA20s  0.002 m 

xA10s  0.002 m  yA10s  0.001 m 

pB08s  0.002 m 

pB06s  0.002 m 

pB04s  0.002 m 

pA20s  0.002 m 

pA10s  0.002 m 

ts  0.002 m 

The planimetric point position depends on two 

parameters, X and Y. The confidence domain 

of the planimetric position of a point is given 

by the invariant called error ellipse (Figure 2). 

 

 
 

Figure 2.  Error ellipse 
 

After compensating the point Pj, the 

coordinates (Xj, Yj) were obtained and the two-

dimensional block: 
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This block is extracted from the general matrix 

of cofactors:  
1

xx NQ  . 

The error ellipse elements (Table 4) are: 

- the semi-major axis:   10 λSa   

- the semi-minor axis:   20 λSb  

- the angle of orientation (the orientation 

of the semi-major axis to the axis X):   
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Table 4. The error ellipse elements 
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The error ellipse is used in determining the 

confidence domain of the planimetric position 

of the points coordinates, determining the 

directions after which the error has extremely 

high or low values, determining the error in any 

direction, optimizing the geodetic network. 

(Nistor, 1998) 

The compensation of geodetic measurements 

and the statistical analysis of the results is 

based on the randomness of the measurement 

errors. R. L. Young (1941) suggested the next 

statistics (Table 5), used to detect the non-

random feature: 





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The statistics 2δ  is called the square average of 

successive differences. 

The next statistics will be used to test the non-

random feature:  

2

2

S

δ
θ   (Von Neuman, 1941) 

The statistics compares two estimators of the 

theoretic dispersion in the distribution  2σμ,N . 

The critical values of the statistics (θ critic) were 

tabled by Hart (1942). In that table are 

calculated lower critical values (θ c.i. = θ n,a) 

and upper critical values (θ c.s. = θ n,a) for the 

risk coefficient  = 0.05 and  = 0.01. 

The decision to accept a null hypothesis, that 

the selection has a non-random feature, is taken 

if:  c.s.calc.c.i. θθθ   

If the selection volume is n > 25, then the 

statistics 
2

θ
1θ '   is normally distributed 














1n

2n
0,N

2

. In this case the statistics is 

calculated with the formula: 
2

2

calc.

'

2S

δ
θθ  .  

It is compared with the critical value: 

1n

2n
k1θθ

2ααn,critic



  

If criticcalc. θθ  , then the hypothesis of a random 

feature is rejected. Otherwise it is accepted the 

alternative hypothesis that the values have a 

random feature. (Laurenzi, 2010) 

The values that determine the random feature 

are:   

vM = -0.0016 m  θ  1.8324 g 

S2 = 0.000001 m2  'θ 0.0838 g 

2 = 0.000005 m2  criticθ  = 0.7464  

Table 5. The Young Test 

 

 
 

CONCLUSIONS 

 

By checking the random nature of the 

experimental data there can be found their 

systematic errors. Knowing that only random 

errors carry the characteristics of random 

variables, the presence of systematic errors has 

an undesirable influence on the studied 

distribution. 
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